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Many two-dimensional spin models can be transformed into Coulomb-gas 
systems in which charges interact via logarithmic potentials. For some models, 
such as the eight-vertex model and the Ashkin-Teller model, the Coulomb-gas 
representation has added significantly to the insight in the phase transitions. For 
other models, notably the X Y  model and the clock models, the equivalence has 
been instrumental for almost our entire understanding of the critical behavior. 
Recently it was shown that the q-state Ports model and the n-vector model are 
equivalent to a Coulomb gas with an asymmetry between positive and negative 
charges. Fieldlike operators in these spin models transform noninteger charges 
and magnetic monopoles. With the aid of exactly solved models the Coulomb- 
gas representation allows analytic calculation of some critical indices. 
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1. I N T R O D U C T I O N  A N D  S U M M A R Y  

This paper  reviews some connect ions  recently reported in the li terature 

between spin mode ls  and  Coulomb-gas  systems on two-dimensional  lat- 

tices. The phrase "Cou lomb  gas" (CG) here and  in the remainder  is  used 
for a (lattice) gas of electric and  magnet ic  charges, represented by integer 

variables e and  m. The e - e  and  m - m  interact ions are Coulombic,  with a 
strength that in two dimensions  varies as the logari thm of the distance for 

large separations.  The e - m  in teract ion is imaginary  a nd  propor t ional  to the 
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angle of the relative position (distance vector) with an arbitrary fixed axis. 
A more detailed definition of the CG is given in Section 2. 

In the course of the last decade a surprising variety of two-dimensional 
spin models has been reported to be equivalent to a CG. In an earlier 
article Kadanoff  (l~ presented a general method by which he explicitly 
transformed a number of discrete spin models into CG models. He thus 
established the CG language as a general way to describe m an y  standard 
problems in two-dimensional statistical mechanics. This language has been 
instrumental in the calculation of the critical indices of a wide variety of 
models, the majority of which, however, cannot be transformed into CG 
systems rigorously. For many systems this method yields a framework 
which permits the analytic calculation of the asymptotic behavior of a large 
class of correlation functions. Some of these results were obtained by a 
direct analysis of the CG system, such as for the XY model, (2) the clock or 
planar Potts model, (3) and solid-on-solid (SOS) models. (4~ A similar analy- 
sis of a vector CG has been very useful in providing specific predictions for 
the physics of melting in two dimensions. (2's) In other cases the CG 
equivalence was used to show that a hierarchy of critical exponents can be 
parametrized by a single variable, (3'6) thus establishing a so-called extended 
scaling relation for any two such critical indices. Whenever one exponent of 
the hierarchy is known through an exact solution of a related model, all 
other indices follow from these extended scaling relations. This procedure 
has been followed with success for the Ashkin=Teller model, (v-l~ the 
q-state Potts model, (9-13) and the O(n) or n-vector model. (~4'15) 

This paper reviews how the use of the CG equivalence has led to the 
analytic calculation of critical exponents. The purpose of this review is to 
demonstrate a uniformity of method in a number of recent results. It is 
attempted by discussing a fairly wide variety of models, to give an impres- 
sion of the state of the art. I hope that, between this objective and the wish 
to treat the subject to a satisfying depth, I have reached a happy compro- 
mise. Derivations that are central to the general discussion are given here. 
Of some arguments that are logically separate, only the results a re  given, 
and for details the reader is referred to some of the original papers. 

Many two-dimensional spin models can be represented by CG systems 
in more than one way. The transformations discussed here are only those 
that resulted in a CG useful for further analysis of the critical behavior. The 
discussion is further limited by excluding vector CG models, such as are 
used for the description of two-dimensional melting, (2'5) and CG models 
with an external electric or magnetic field, used to discuss commensurate-  
incommensurate transitions. (16) 

The status of the results is fairly summarized as follows. The calcula- 
tion of critical exponents depends on qualitative assumptions, in the form 
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of global statements concerning the renormalization group (RG) flows. If 
these assumptions are valid, the results are exact; if they are violated, the 
results have no reason to be even approximate. Therefore the consistency 
between the results and approximate calculations, adds to the plausibility 
of the assumptions. 

This paper is organized as follows: Section 2.t defines the CG and 
introduces notation. In Section 2.2 the RG theory of the CG is developed, 
and Section 2.3 discusses some of its consequences for the phase diagram of 
the CG. In Section 3 representative models from a variety two-dimensional 
universality classes are transformed into CG systems. Where possible this is 
done explicitly; otherwise RG arguments are used to establish the equiva- 
lence. In Section 4 some conclusions are given concerning the accomplish- 
ments and the weaknesses of the theory. 

2. THE COULOMB GAS 

2.1. Description of the Model 

The Coulomb gas model is defined by means of the action A (=  
- H/kT) ,  

A {e,m} = ~g j~ke jG(r j -  rk)ek+ g ~qrneG(r p - rq)mq 

+ iEe j~(r  j - 9)me+ E lnX(~)  + E l n  Y(rnp) (2.1) 
J,P J P 

The integer variables e and m represent electric and magnetic charges. The 
indicesj  and k label the sites of a lattice, while p and q represent those of 
the dual lattice. The square lattice is used throughout, unless stated other- 
wise explicitly. The vector r denotes the position of the sitesl The functions 
X(e) and Y(m) control by way of fugacities the abundance of sites with a 
given electric or magnetic charge. The pair potentials G and �9 are l o n g  
range and behave for large separation r = (x, y) as 

G(r) + i ~ ( r ) ~  ln(x + iy) (2.2) 

For finite distances G is a spherically symmetric solution of 

V. VG(r) = 2rrdr, 0 (2.3) 

where the gradient symbol V denotes the difference operator between 
nearest-neighbor lattice sites. It is a vector operator, and like other vector 
fields, it has its x (y) component on the horizontal (vertical) edges of the 
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lattice. For example 

7 . VG(r)= G(r + 2) + G ( r -  2) + G(r + 2)) + G ( r - ~ ) - 4 G ( r )  (2.4) 

Here 2 and )~ are the unit lattice vectors in the x and y directions. The 
potential q~ now follows from the equation 

c. 7qb(r) = V G(r) (2.5) 

where c is the antisymmetric tensor. Equation (2.5) only has a solution with 
a cut or a multivalued solution, consistent with Eq. (2.2). 

The partition sum Zcg is now given by the summation 

Zcg= ~ ~] expA {e,m} (2.6) 
{e} {m} 

subject to the charge neutrality condition 

2 ej = 0, • m e = 0 (2.7) 
j P 

In order to avoid untransparant equations, I introduce a more compact 
notation by suppressing the explicit reference to the sites by indices. 
Likewise the position symbols r and the summation over the sites will be 
implied. With these simplifications Eq. (2.1) becomes 

1 
Whenever an expression is to be summed over the lattice it will be 
contained in square brackets [ ] to avoid ambiguity. 

2.2. Renormalization Group Analysis 

The CG has a rich structure of critical behavior, which can be 
analyzed by means of RG theory. The parameters of the theory are the 
coupling constant g and the infinite hierarchy of fugacities X(e) and Y(m) 
for e,m = . . . , - 2 , -  1,0, 1,2 . . . . .  A trivial limit of the CG is the vac- 
uum 

X(e) = 3e,o, Y(m) = 3m, o (2.9) 

in which all charges are suppressed, and the partition sum is 1. The RG 
transformation can be computed in an expansion about the vacuum in 
powers of the fugacities of nonzero charge. A block of L 2 sites is taken 
together to form a site in the renormalized lattice. Distances are measured 
in lattice spacings and therefore rescale by a factor L = exp(b). The 

asymptot ic  interaction expressed in the renormalized distance r ' =  r / L  is 
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for the electric charges 

2-~ E eje~lnlrj- rk] = -~g E eje~(lnJrj -- r'~l + b) j~.k j-~k 

2g ~e~lnl~ - rkl - ~-~' e)2 (2.10) 
] 

as follows from the charge neutrality condition. The m - m  interaction 
transforms in the same way, with the coupling constant g replaced by 1/g. 
The fugacities, measured per new site, renormalize by a factor L 2 and by 
the on-site term in Eq. (2.10). The RG equations thus become 

e 2 d-g-X(e)=(2-2gg) 
(2.11) 

up to leading order in the fugacities. It is not necessary to calculate 
explicitly the higher-order terms in these recursion relations. However, it is 
useful to keep in mind that two charges within the confines of L 2 sites 
produce in the renormalized system a site with the sum of the charges, i.e., 
the second-order contributions to dX(e + e')/db include a term X(e)X(e'). 
In the vacuum the coupling constant g does not renormalize, as follows 
from Eq. (2.11). This implies that Eq. (2.9) represents a line of fixed points 
parametrized by g; surprisingly the vacuum is a critical line. The leading 
contribution to the renormalization of g is second order in X and Y. Two 
opposite charges separated by less than the new lattice constant turn into a 
neutral site in the renormalized system. However, their effect remains as 
screening of the interaction between distant charges, which effectively 
changes the coupling constant. The calculation of this effect is tedious, but 
for the purposes of this paper only the sign is needed. From Ref. 3 I quote 

g db--e~=~ R g X ( e ) X ( - e ) -  ~ R(m2g)Y(m)Y(-m) (2.12) 
= m = l  

where R(t) = 2~r2t exp( -  ~rt/2). 
Equation (2.11) suffices to calculate the critmal exponents of the 

charge correlation functions in the vacuum. However, these correlation 
functions can also be computed directly from the partition sum. With the 
fugacities defined on every site independently the correlation functions 
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between two test charges are simply the derivatives of the free energy, 

d21n Zcg 

C f ( o  - rk) = dXj(e) d X k ( -  e) 
(2.13) 

d 21n Zcg 

Cff  (rp - rq)= drp(rn )drq( -  m) 

where the indices on X and Y refer to the sites on which they are defined. 
In the vacuum these correlation functions are calculated trivially 

- - e  2 
Cf (r) = exp T G(r) ~ Irl -~/g 

(2.14) 
C~(r)  = exp - mZgG(r) ~ Irl-m2g 

The exponents of  these correlation functionsagree with the eigenvalues of 
the RG equations (2.11). 

2.3. The Phase Diagram 

The recursion relations (2.11) and (2.12) will now be used to explore 
those sections of the phase diagram that apply to the spin models discussed 
in Section 3. First consider the case with only magnetic charges: 

X(e)  = 6e, 0 and Y(m) = Y ( - m )  > 0 (2.15) 

From Eq. (2.11) it follows that for g > 4 Y(1) is relevant and will grow 
under renormalization. At the same time g diminishes [Eq. (2.12)], thus 
accelerating the increase of Y(1). Since this flow continues beyond the limit 
of validity of the RG equations, one cannot from these equations alone 
infer the nature of this phase. It is, however, reasonable to assume that the 
abundance of weakly coupled magnetic monopoles will effectively screen 
their mutual interaction, so that the correlation functions Cff approach a 
nonzero constant at large distances. 

For g > 4 all Y(m)'s are irrelevant, and therefore the system will 
approach the vacuum under renormalization. The physical meaning of a 
phase that renormalizes to the vacuum is not a phase without particles, but 
a phase in which all charges are so strongly bound to neutral complexes 
that they do not qualitatively affect the macroscopic interaction between 
two test particles. On a sufficiently large scale these multipoles are invisible 
but for their screeing effect, which is taken into account by the renormal- 
ized coupling constant. The phase boundary is therefore not precisely at 
g = 4 but at the somewhat larger value 

ge = 4 + Y(1)[8R(4)] 1/2 (2.16) 
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up to linear order in Y(1). In the regime g > gc the interaction between 
monopoles is truly logarithmic, and the correlations (2.13) decay algebra- 
ically. The exponents vary with g, as in Eq. (2.14), but with the renormal- 
ized coupling constant gR substituted for g. Though gR(g) is not known 
generally, at the transition clearly gR = 4. At g = go, for example, 

C((r)~'~lr[-1/4 and C~(r)~lr[ -4 (2.17) 

The singularity in the free energy when g crosses the transition is extremely 
weak. It can be derived from the RG equations (2'3) 

f~--exp( - c I g - gel- ,/2) (2.18) 

with a positive constant c. 
Without further analysis the behavior of a system with only electric 

charges can be inferred from the full symmetry of the CG for interchange 
between electric and magnetic particles and simultaneous inversion of the 
coupling constant. 

Now consider a CG with both electric and magnetic particles, such 
that all electric charges are multiples o f  an elementary charge p, i.e., 
X(e) = 0 unless e is an integer multiple of p. Charge inversion symmetry is 
imposed, X(e) = X ( - e )  and Y(m) = Y(-m).  If P < 4 there is no value of 
the coupling constant for which both the magnetic and electric fugacities 
are irrelevant. For such a case RG equations in low-order expansion in X 
and Y are clearly insufficient to discuss this model. When p > 4, however, 
there is a window in the values of g 

4 < g <1)2/4 (2.19) 

in which both the X and Y variables are irrelevant. For small but finite 
values of Y(1) and X(p), therefore, one expects three phases: (i) g < gl ~ 4, 
in which the magnetic monopoles are free; (ii) g, < g <  gz~p2/4, in 
which both magnetic and electric particles are bound; and (iii) g > g2, in 
which the electric charges are free. The precise values of gl and g2 depend 
on the fugacities and are not universal. The exponents of the correlation 
functions in the intermediate phase depend on the renormalized coupling 
constant gR via Eq. (2.14). At the transition values of g the RG flow is of 
course towards the boundaries of the window of attraction of the vacuum, 
Eq. (2.19), hence 

g R ( g l ) = 4  and gR(gz)=p2/4 (2.20) 

Consequently at the transitions the correlation-function exponents are 
known. 

The CG models discussed above are all symmetric under inversion of 
the charge, i.e., X(e)= X( -e )  and Y(m)= Y(-m).  If this symmetry is 
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violated a richer structure of critical behavior emerges. Consider a model 
with only electric charges, Y(m)--0 for m 4= 0. The fugacities X(1) and 
X ( -  1) are both zero, and the value of g is taken between 1 and 4, so that 
only X(2) and X ( - 2 )  are relevant. X ( 4 ) =  X ( - 4 )  is kept at a small 
positive value and the fugacities of higher charges, all irrelevant, need not 
be specified. Since both X(2) and X ( - 2 )  are relevant, only the origin of the 
X ( 2 ) - X ( - 2 )  plane flows towards the vacuum under RG.  This, however, is 
not the only critical point. When initially both X(2) and X ( - 2 )  are 
positive, they grow under renormalization. From the recursion relation for g 
(2.12) it follows that g also increases, thus making these fugacities all the 
more relevant. If, however, the initial action has X ( - 2 ) <  0 < X(2), the 
coupling constant decreases and eventually renders the fugacities irrelevant. 
As a consequence X(2) and X ( - 2 )  begin to diminish in magnitude and the 
model renormalizes towards the vacuum at a rather smaller value of gR, in 
particular gR < 1. This implies that the first and third quadrant  of the 
X ( 2 ) - X ( - 2 )  plane represent quite different phases than the second and 
fourth quadrant, and that the axes are phase boundaries, as shown in Fig. 
1. The singularity of the free energy at X(2) = 0 and at X ( - 2 )  -- 0 can be 

x -2) , ,  
/ 

/ 

,,'O(n) 
/ 

/ 
I 

/ 
! 

f - . 

X(2) 

Fig. 1. The phase diagram in the X(2)-X(- 2) plane. The heavy lines are phase transitions at 
which the renormalized value of X(2) or X(-2) vanishes. The shaded region initially 
renormalizes away from the vacuum, but ultimately returns to it. The dashed curve is an 
impression of the locus of an O(n) model (Section 3.6) in this parameter space, as it is 
transformed into a CG. 
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derived from the RG equations. As a consequence of the charge neutrality 
condition the free energy depends on the fugacities only through charge- 
neutral combinations, such as 

u = X ( 2 ) X ( -  2) 

v = X(2)2X(-4)  (2.21) 

w = X( - 2)2X(4) 

Therefore it is useful to derive RG equations for these combinations. From 
Eq. (2.11): 

du  _ 4(1 - 

- 6 ( , _  

The free energy is a singular function of X(2) as X(2) vanishes, with a 
singular part 

f ~ [ X ( 2 ) l  2/yx,2, (2.23) 

but the power depends on how X(2)=  0 is approached. If X ( - 2 ) =  0 is 
fixed while X(2) vanishes, the parameters u and w are zero irrespective of 
X(2). Therefore the RG equation for v governs the singularity in this case. 
Since v is quadratic in X(2) its eigenvalue is twice Yx(2~: 

Yx(2) = 3 - 6 / g  e (2.24) 

If X ( - 2 )  is proportional to X(2) as it approaches zero, u, v,  and w all 
vanish quadratically in X(2). Therefore the largest eigenvalue of the RG 
equations (2.22), which for g < 4 is that of u, leads to the dominant 
singularity. Hence in this case 

Yx(2) = 2 - 2 / g  R (2.25) 

Finally when X ( - 2 )  is kept at a nonzero constant as X(2) vanishes, w 
remains finite. Therefore the linearized recursion relations (2.22) yield the 
critical exponents of this case only when w is irrelevant, that is for g < 2. 
Then the singularity is governed by the exponent 

Yx(2) = 4 - 4 / g  R (2.26) 

The difference between the exponents Eqs. (2.24)-(2.26) is caused by the 
charge neutrality condition. When positive and negative charges have 
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different fugacities, neutrality is an active constraint, which in this deriva- 
tion is implemented by observing that the free energy depends on the 
fugacities only through u, v, and w. 

Some caution should be taken with the application of these results, 
Eqs. (2.24)-(2.26), to actual models. The renormalized coupling constant gR 
is generally not known explicitly. But also the phase boundaries in Fig. l 
are located where the renormalized X(2) or X ( - 2 )  vanish, rather than their 
initial values. Tha t  these criteria do not coincide is due to the nonlinear 
terms in the RG equations, such as a term X ( 2 ) X ( - 4 )  in the renormaliza- 
tion of X ( - 2 ) .  

3. TRANSFORMATIONS OF SPIN MODELS 

3.1. The X Y  Model 

In spite of a proof of the absence of long-range order (~7~ in the 
two-dimensional XY model, numerical results have been known to indicate 
a phase transition at finite temperature. (~8~ Kosterlitz and Thouless (2) for 
the first time gave a quantitative description of this new kind of phase 
transition which has since borne their name (KT). Their papers pioneered 
the use of the CG as a convenient way to describe two-dimensional models. 
Later Villain (~9~ modified the XY model so that it could be transformed 
into a CG rigorously. 

The model is generally defined to have on each site i of a lattice a unit 
vector (cos Oi; sin 0i), interacting via the nearest-neighbor Hamiltonian 

- H  - 2 V(Oj- O k) (3.1) kT <j,~) 

The function V(O) is analytic, periodic with period 2~r, and monotonic 
between its maximum and minimum at 0 = 0 and ~r, respectively. The most 
obvious choice for V(O) is gcos0,  but following Villain I will take the form 

- g 2 n) 2 (3 .2)  exp V(O ) = exp ~ (0 - 

With this definition of V the partition sum in the compact notation of 
Section 2 becomes 

Zxy=~,(2~d(O}exp[-4~(VO-2~rk) 2] (3.3) 
(k) a0 

Here k is an integer vector field residing on the nearest-neighbor links of 
the lattice. By means of par t ia l  summation of the implied sum in the 
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exponent this partition sum can be written 

Z~,y= {~k)fo2'~d (0 } exp[ g 0 v .  V 0 - g O V . k - T r g k .  k I (3.4) 

The integral over 0 extends from 0 to 2~r, but since all dependence on 0 is 
periodic, the limits can be changed into - oe and oe, with no change but a 
simple overall, albeit infinite, constant. The remaining Gaussian integral 
over 0 can be performed, making use of Eq. (2.3), with the result 

Zxy~ {~) exp[ g (V.  k)G(V . k ) -  ~rgk.k] (3.5) 

apart from a multiplicative constant, analytic in g. Rewriting the last term 
in the exponent gives the expression 

Z~y~-- ~. exp- g [ (V . k)G(V . k) + k . (V . V Gk) ] (3.6) 
(k) 

which can be simplified to 

Zxy~(~k)exP[ g (V • k)G(V • k) ] 

and again apart from a multiplicative constant to 

Zxy~  ~ exp[ gmGm I (3.7) 
(m) ' 

This completes the transformation of the XY model defined by Eqs. (3.1) 
and (3.2) to a simple CG with only one kind of charges. The particular 
form (3.7) is identical to the definition Eq. (2.1) with Y(m)=  1, and 
X(e) = Be,0. 

It would be interesting to see the meaning of the charges m in terms of 
the original 0 variables. Therefore consider a situation in which all m 
variables are zero except in the origin. A corresponding configuration of k 
is one where all the ks, that is, the k variables on the horizontal bonds, 
vanish and the ky are 1 on the positive x axis. 

k x = 0, ky = ay,0{ 1 + sgn (x ) ) / 2  (3.8) 

The average configuration of 0 with this k can be found easily, since for 
Gaussian integrals the average and most probable configurations are the 
same. Maximizing the integrand of Eq. (3.3) leads to the equation 

V- V0 = 27rV- k (3.9) 

which is solved by 
0j = OQ)) + const (3.10) 

This configuration, called a vortex, is characterized by the fact that a 
traveler round the origin finds the spin s - - ( cos0 ,  sin0) on his way going 
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round once as well, as he returns to his starting point. A typical example of 
a vortex is the configuration where all the spins point inward or outward 
from the origin, s = -  P or s = ?. An antivortex is the configuration 
associated with a charge rn = - 1 and has the form 0j = - ~(rj) + const. 

In Section 2.3 it is shown that the CG equation (3.7) has a phase at 
large g, where the charges (the vortices) are bound into dipole pairs, and 
another phase at small g where the vortices are free to move individually. A 
single phase transition characterized by the weak singularity in the free 
energy equation (2.8), the KT transition, separates the two phases. It is 
clear that a phase in which vortices are abundant  must be disordered in the 
0-variables. The interpretation of the low-temperature (large g) phase is less 
obvious. As it renormalizes towards the vacuum, one expects algebraic 
decay of some correlation functions, in particular of the vortex-antivortex 
correlation function. A more complete discussion of this phase is deferred 
to Section 3.2, where an ordering field in the XY model is included in the 
transformation to the CG. 

3.2. Clock and Solid-on-Solid Models 

The XY Hamiltonian [Eqs. (3.1) and (3.2)] is generalized with an 
on-site term which may represent the effect of a magnetic field: 

- H  - Z V ( g - O k ) + E W ( p O : )  (3.11) 
kT (j,k ) j 

The function W(O) is periodic with period 2~r, and is typically chosen 
cos(0). The effect of this term physically is best understood in terms of the 
two-component spin (cos0, sin0), as representing the magnetic moment of 
an atom. For p = 1 W acts like a magnetic field, aligning the spins in a 
fixed direction. Higher values of p may simulate the effect of the surround- 
ing crystal, which makes it energetically favorable for the spins to point in 
the direction of one of the crystallographic axes. The main result of W in 
any case is to break the full circular symmetry, leaving only the p-fold 
Symmetry of a regular polygon. Following Villain (19) I take 

e x p W ( 0 )  = ~ exp(-inO + nZlnx) (3.12) 
n ~  - - O Q  

This definition is an alternative way to write Eq. (3.2) with g replaced by 
4~r/ln(x). The parameter x which varies between 0 and 1 is a measure of 
the strength of W. If x is small it acts like a weak field proportional to x. At 
x = 1 the potential W is infinitely strong so that 0 can assume only integer 
multiples of 2~r/p. In this limit with only discrete values of 0 the model is 
known as the Z e model or p-state clock model. The complete partition sum 
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is now 

- ipnO + n21n(x) + (V • k)21n(y)] (3.13) 

In addition to the symmetry breaking field another term is included, 
proportional to the square of the curl of k, which above has been recog- 
nized as the vorticity of 0. Thus by varying the parameter  y one is able to 
control the concentration of vortices. By setting y = 1 the additional term 
vanishes so that the model reduces to a clock model (x = 1) or an X Y  
model with a field (0 < x < 1) or without a field (x = 0). In the other 
extreme y = 0 the vortices are totally suppressed so that the periodic nature 
of 0 is lost. This limit deserves some closer attention. 

The vector field k, having no curl, can be written as the gradient of 
some integer scalar field, say s. It is then convenient to introduce a new 
variable 0 '  = 0 - 27rs, and to replace the integral over 0 and the sum over s 
jointly by an integral over 0':  

2 ( {0} f_+ d (o'} (3.14) 
(s) ao 

The partition sum is then 

Z = ~ ( ~ d { O ' } e x p [ ~ - g  V( 0 ' ) 2 - i p n 0 ' + n 2 1 n ( x ) l  (3.15) 
(n}-,- o~ 

noting that exp(27ripns) -- 1. If x = 0 the variables n are forced to be zero, 
and the remaining partition sum is simply a Gaussian integral over 0'. Thus 
in the limit x = y  = 0, the model defined by Eq. (3.13) is the Gaussian 
model. At x -- 1 the sum over n results in periodic 6 functions for the O' 
variables. The integration then reduces to a sum over the now discrete 0 '  
variables, interacting via a Gaussian. The resulting model, appropriately 
called the discrete Gaussian model, is an example of a class of models, 
known as solid-on-solid (SOS) models. In general SOS models have dis- 
crete, unbounded variables and a Hamiltonian which depends on the 
gradient of these variables, such that large gradients are suppressed. They 
are used to describe the physics of crystal surfaces. 

Thus the partition sum (3.13) includes the X Y  model in the limit x = 0, 
y = 1; a Z e model for x = y = 1, the Gaussian model at x = y = 0, and the 
discrete Gaussian model for x = 1, y = 0. 

Now I proceed to transform the model to a CG. First observe that the 
integrand-summand of Eq. (3.13) is invariant under the gauge transforma- 
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tion 

0--> O' = 0 + 2rrs (3.16) 
k - ~ k '  = k +  Vs 

where the s are integer variables on each site of the lattice. Now choose s 
such that the horizontal component of k' vanishes, and accordingly replace 
the sum over k by a sum over s and over the vertical component of k': 

--> ~ ~ (3.17) 
(k} (s} (k'} 

The integral is turned into a Gaussian integral by subsequently performing 
the replacement Eq. (3.14). The partition sum now has the form 

[---~g O'V- V O ' -  O'(ipn + gV , k) - ~rgk. k Z= E Ef+~d{0'}exp 
4~ (k'} (n}"-~ 

+ n21n(x) + (v x k')21n(y)] (3.18) 

Performing the Gaussian integral, making use of the inverse of the 
Laplacian Eq. (2.3) leads to the result 

~1  [ - 1 ( r  + gv " k ' ) c ( u n  + ~v " k') - ~ k "  k Z =  Z G E  exp 
{n} 

+ n21n(x) + (V X k')21n(y)l (3.19) 

where Z a is the partition integral of the Gaussian model proper. The terms 
bilinear in k' can be expressed in m = V • k' as in Eqs. (3.5)-(3.7), and the 
remaining k' dependence likewise with the use of Eq. (2.5): 

Z _  ~ expf P 2 g ] Z-c {re,n} L ~gnGn + - - m G m  + ipmebn + n21n(x) + rnZln(y) 

(3.20) 
This completes the transformation of the spin model Eq. (3.13) into a CG 
of which the electric charges e are integer multiples of p. Equation (3.20) 
can be identified with Eq. (2.8) by defining 

Y(m) = y (m2) 

and 

X ( e ) = x  ("2) for e = n p  

= 0 otherwise (3.21) 

The critical behavior of the CG has been discussed in Section 2.3. It is 
relatively straightforward to translate these findings into SOS, X Y  and Z e 
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spin language. An electric charge e corresponds to a factor exp(ieO), called 
a spin-wave excitation, and a magnetic monopole m corresponds to a 
vortex with vorticity m. This is the main key to reach some conclusions for 
the critical behavior of these planar spin models from the discussion in 
Section 2. 

An XY model corresponds to the CG (3.20) with x = 0 and 7 = 1, that 
is a CG without electric charges, but with magnetic monopoles. In its 
high-temperature phase the vortices are free, and the model is disordered. 
In the low-temperature phase the CG renormalizes towards the vacuum, 
where the correlation functions are known. In particular the spin-spin 
correlation 

(cos(0j - O k )) = (exp(i0j - iO~ )} ~ II) - rkl- '/g" (3.22) 

The fact that this correlation function approaches zero at large distances, 
implies that there is no genuine long-range order, (17) or that (cos 0)  = 0. At 
very low temperatures where y is strongly irrelevant, gR does not differ 
appreciably from g. At the KT transition, because the vortices are mar- 
ginal, gR = 4 [Eq. (2.17)]. Correlation functions with higher periodicity q 

(cos(  qOj - qOk ) ) ~ ] r  j -- rk] -qz/gR (3.23) 
Therefore even though gR is not known exactly, relations between expo- 
nents of different correlation functions and their value at the transition 
follow from this approach exactly. 

The discrete Gaussian model transforms into a similar CG model, now 
with x = 1, y = 0, with electric rather than magnetic charges. The phase 
diagram is therefore similar to that of the XY model, but here it is the 
high-temperature phase that renormalizes to the CG vacuum. In the low- 
temperature phase the spin waves are relevant and consequently (cos(q0)) 
(with q < p) acquires a nonzero expectation value. This indicates that one 
of the discrete values available to 0 predominates throughout the lattice, 
i.e., the model is ordered. The corresponding correlation function does not 
vanish at infinite distances, in contrast with its behavior in the high- 
temperature phase, given by Eq. (3.23). The transition is at the point where 
the eigenvalue of the smallest electric charge p changes sign, 

gR P2/4 (3.24) 

There are no vortices in the discrete Gaussian model per se, but they may 
be introduced by giving the parameter y a small nonzero value. In the 
high-temperature phase (gR < P2/4) the free energy is a nonanalytic func- 
tion of y with a singular part 

f s ~ y  4/(4-gR) (3.25) 

as follows from the RG equations (2.11). 
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The Zp or/7-state clock model, x = y  = 1, is transformed into a CG 
with both electric and magnetic particles, the former only with charges that 
are multiples of/7- In the high-temperature extreme the vortices effectively 
disorder the system, while in the low-temperature limit the presence of the 
relevant spin-wave excitations bring the model in an ordered state. Some 
phase transition must separate these two phases. If/7 ~< 4 there is no value 
of gR for which both the vortices and the spin waves are irrelevant. 
Therefore the phase transitions of the Z 2, Z 3, and Z 4 models, otherwise 
known as the Ising, three-state Potts, and Ashkin-Teller models, respec- 
tively, are not governed by the vacuum of this CG. Fortunately these 
models are equivalent to other CG models (Sections 3.3 and 3.4) in which 
the transition is more conveniently located. When/7 > 4 there is a regime 

4 < gR </72/4 (3.26) 

in which both x and y are irrelevant. This leads to the existence of an 
intermediate phase which is neither genuinely ordered, nor disordered. 
Correlation functions in this phase typically decay algebraically. The spin- 
spin correlation function, Eq. (3.22), has an exponent which varies between 
4//72 in the low- and 1/4  in the high-temperature extreme of the intermedi- 
ate phase. 

When x = y  = 0 the partition sum Eq. (3.13) represents a Gaussian 
model, and transforms into a CG in the vacuum. This agrees with the 
well-known fact that the Gaussian model has no phase transition and 
algebraically decaying correlation function at all temperatures. 

The conclusions presented above for the XY, Zp, and discrete Gauss- 
ian models, clearly illustrate that the transformation to a CG is a useful tool 
to analyze critical behavior. However, the transformation of the model 
(3.13) into the CG (3.20) could be done explicitly, only by virtue of the 
quadratic form of the Hamiltonian. Many models that do not have this 
property describe the same physics nonetheless. An SOS model in which 
the energy is linear in the difference between neighboring site variables, or 
in which differences of more than a single unit are not allowed, cannot be 
transformed simply into CG models. However the Hamiltonian may be 
expanded in powers of the gradient of 0, the leading term of which is 
Gaussian, and a RG transformation can be computed in leading order of 
the remaining terms. Since the non-Gaussian terms all contain more than 
two gradient operators they are irrelevant at all temperatures. By thus using 
RG arguments SOS, clock, and XY models with other than Villain poten- 
tials can be formally brought into a form in which a transformation to a 
CG is feasible. The results of these techniques may be accepted with a 
certain amount of reservation. RG transformations that can be calculated 
only in low-order expansion away from the Gaussian model, alias the CG 
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vacuum, are used at finite distance away from these models. It is implicitly 
assumed that the R G  flows connect the C G  vacuum and the model under 
investigation uninhibited by other fixed points. The beauty of the argument 
is that provided this qualitative assumption, quantitatively exact conclu- 
sions can be made. 

3.3. The F Model and the BCSOS Model 

The F model (2~ is one of a class of two-dimensional models, known as 
six-vertex (6V) and eight-vertex (8V) models. These models are defined as 
follows. Place an arrow on each of the edges of a square lattice, such that 
the number  of arrows pointing into any vertex is even. This allows eight 
configurations of arrows round a given vertex, as shown in Fig. 2a. Each of 
these configurations is given a weight, W l, W 2 . . . . .  W s, and the partition 
sum of the model is the sum over all possible arrow configurations, of the 
product of all the vertex weights. For general values of Wj this model is 
called the 8V model. A subclass of these, the 6V models, satisfy the 
constraint that the number  of arrows pointing into any vertex be equal to 
the number  of outward pointing arrows. This condition is called the ice rule 
from the interpretation of the arrows as hydrogen bonds with an asymmet- 
ric charge distribution. Local neutrality at each vertex requires the exclu- 
sion of vertex configurations 7 and 8. The F-model  satisfies the ice rule, 
W 7 = W 8 = 0, and has W l = W 2 = W 3 = W 4 and W 5 = W 6. Its solution by 
Lieb (2~) was followed by a long list of generalizations, (2z23) which also were 
solved exactly. The F-model  has a transition at W 5 = 2 W 1, where the free 
energy is singular in the same way as described by Eq. (2.18). 

The symmetric 8V model, with weights invariant under simultaneous 
inversion of all the arrows, has been solved by Baxter. (24) The F-model 
forms a critical subspace of this more general model. The free energy is a 
singular function of W 7 at W 7 = W 8 = 0, with an exponent that varies with 

Q. 

b. 

Fig. 2. 

X X X X X X X X  

0 0 0 0 < 3 > 0 0 0  > 
1 2 3 4 5 6 7 8 

Eight vertex (a) and BCSOS (b) configurations. The configurations of row b are 
formed by turning the edges of row a each about its center over ~r/2 to the left. 
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the other weights: 

fs~lW7[ 2/ySv with Ysv = 4 c o s - ' ( ~ W s )  (3.27) 

at the, F model 

W L= W 2= W 3= W4, W 5= W 6, and W 7= Ws~0 (3.28) 

Van Beijeren (25) observed that the F model is equivalent to an SOS model 
for the surface of a bcc crystal, which he named the BCSOS model. 
Turning all the edges and arrows of the model over a straight angle to the 
left produces a new configuration of arrows on the edges of the dual lattice. 
In Fig. 2b the result of this transformation is shown. The ice rule, which 
implies that the original arrow field has no divergence, guarantees that the 
turned arrows are free of curl. Therefore the latter arrow configuration is 
the gradient of some scalar variable, say 0, on the sites of the dual lattice. 
Between nearest-neighbor sites the 0 variables always differ by the same 
amount, say ~r/2, and second neighbors may be equal or differ by 7r. The 
lattice thus naturally decomposes into two sublattices, on which the 0 
variables assume even and odd multiples of 7r/2, respectively. This is a 
natural representation of the surface of a bcc crystal projected in the 
(0, 0, 1) direction, the sublattices corresponding with the cubic and body- 
centered positions, respectively. Note further that the configurations 7 and 
8, excluded in the F model, correspond to vortices in the BCSOS model 
(Fig. 2b). 

As the F model is identical to an SOS model, the RG arguments at the 
end of Section 3.2 suggest that it be equivalent to a CG. This statement can 
be supported by the following circumstantial evidence. Just like the electric 
CG, the F model has two phases separated by a phase transition of infinite 
order [Eq. (2.18)]. In the high-temperature phase of the F model the vortex 
weights W7 and Ws have a critical exponent which varies with temperature 
[Eq. (3.27)], just like the exponent of the monopole fugacity in the electric 
CG [Eq. (3.25)]. The final test is the value of this exponent at the transition, 
which according to the analysis in Section 2.2 is universal. The 0 variables 
of the BCSOS model on the scale chosen above, assume integer multiples of 
~r/2. This corresponds to p = 4 in the model (3.13), and with a critical 
gR of 4 [Eq. (3.24)]. The arrow configurations 7 and 8 have vorticity 1 and 
-1 ,  corresponding to four steps of ~r/2 each (see Fig. 2b). The critical 
exponent of these vortices is precisely zero at the transition, from Eqs. 
(3.24)-(3.25), in accord with the result of Baxter's exact solution, Eq. (3.27). 

The agreement between the exact solution of the F model and the 
results from the CG analysis justifies the assumption that the RG flows 
indeed connect the models, unobstructed by intermediate fixed points. 
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Once the connection is accepted the 8V exponent [Eq. (3.27)] determines 
the renormalized coupling constant gR as a function of the vertex weights: 

S.  = sin ~ (3.29) 

This result is useful even for the F and 8V models as the correlation 
function of these models are not known otherwise, in spite of the exact 
calculationS of their free energy. In addition the CG equivalence allows the 
student of these models to explore the parameter space in regions where no 
exact solution is available. 

3.4. T h e A s h k i n - T e l l e r  Mode l  

The Z 4 model, originally introduced by  Ashkin and Teller, (26) is 
generally named after these authors. In an Ising representation its Hamilto- 
nian is 

- H  - ~ Ks . sk ( t t  j + 1) + Ltjt  k (3.30) 
k T (j,k ) 

where the spins s and t are 1 or - 1 and the sum is over nearest-neighbor 
pairs of sites of a square lattice L. This Hamiltonian is related to Eq. (3.13) 
with p = 4, by the identification sj = cos(0j) + sin(0j) and ( /=  cos(20j). By a 
dual transformation (27'~~ on the s variables while keeping the t's fixed, one 
obtains an Ising representation of a 6V model. (28) This dual model consists 
of t variables on the original lattice L and dual variables of s, say ~, on the 
dual lattice D. On the combined lattice LD, as shown in Fig. 3, the s and t 
variables are nearest neighbors of each other. The equivalence of a 6V 
model is realized by placing arrows on the edges of LD pointing from s to t 
or from t to g" if ~ = t or Y v ~ t, respectively. This produces a curl-free arrow 
configuration of the kind exemplified in Fig. 2b. The edges of L and D 
form the diagonals of the faces of LD, as shown in Fig. 3. On the squares of 
which the horizontal diagonal is an edge of L (D) the weights are labeled 
with superscript a (b). Thus the weights of the 6V model dual to the 
Ashin-Teller model (3.30) are 

w;= wg 

= sinh 2K 

= exp - 2L 

= cosh 2K 
(3.31) 

w =o 
Let the 0 variables on the sublattice L of this BCSOS model, assume integer 
multiples of 7r, and on the sublattice D odd multiples of 7r/2. Then the 
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staggering of the weights (3.30) can be very naturally expressed in 0 by a 
term in the Hamiltonian given by 

tATCOS( Oj + Ok + Op + Oq ) 2  (3�9 

with 

tAT = 2L + ln(sinh 2 K )  

where the subscriptsj  and k are sites on L while/) and q label sites on D. A 
more complete discussion of terms of this kind is found in Refs. 8 and 12. 
On the line s inh (2K)=  e x p ( - 2 L )  the coefficient of the term (3.32) van- 
ishes, and the model is identical to an F model�9 Since the F model is critical 
for W 5 < 2 W~, this may well be a critical line in the Ashkin-Teller  model, 
depending on the relevance of tAT.  The term (3.32) represents the presence 
of four charges of 1 /2  or - 1 / 2 ,  on the corners of the square�9 Under  R G  
transformations the most relevant contribution of the term (3.32) is of the 
form cos(20), corresponding to the total charge 2 or - 2  in the CG. The 
fugacity of such charge has an exponent 2 -  2/g R, which is relevant for 
gR > 1. Therefore the line tAT = 0 is indeed a critical line in the Ashkin-  
Teller model with a singular part  of the free energy 

f,~ltAvl 2/yAT with .FAT = 2 - 2/g n (3�9 



Coulomb Gas Description of 2-D Critical Behavior 751 

and 
8 s in - l (  c ~  ) 

gR=  2 
Other operators in the Ashkin-Teller model can also be expressed in CG 
variables, (8'9) but for the present review Eq. (3.33) sufficiently demonstrates 
the predictive power of the method. 

3.5. The  q-State Ports Mode l  

One of the many generalizations of the Ising model is the Potts 
model (29) defined by the Hamiltonian 

- H _ E J65,~ (3.34) 
k T  ' (j,k ) 

where the spins s can: assume q different values. The model has been 
mapped onto a 6V model by Temperley and Lieb. {3~ For the details of this 
transformation the reader is referred to a pedagogical rederivation by 
Baxter et al.(31) Here I just use the equivalence to establish a connection of 
the Ports model via the BCSOS model to the CG. The resulting 6V model is 
defined by the weights 

= w2 

wg= 

= w#= w2=w 

= W =l 

= e x p ( -  iv) + w exp(iv) 
(3.35) 

W~' = W~ = exp(iv) + w exp( - iv) 

with exp(Y) = 1 + 2wcos2v  and q = 2 + cos4v. The superscripts a and b 
are defined as for Eq. (3.31). Once the model has been transformed to the 
6V model the number of states q need no longer be a natural number but 
can assume real values. 

The critical point of the Potts model has long been known (29) by 
duality and is given by w = 1. At this value of w the 6V model (3.35) 
reduces to the F model. As in the Ashkin-Teller model, when w =~ 0, the 
term (3.32) gets a nonzero coefficient of the BCSOS Hamiltonian. In 
addition the weights W s and W 6 are no longer equal and differ between the 
sublattices. It is not difficult to convince oneself that this difference is 
precisely taken care of by an additional term in the Hamiltonian propor- 
tional to 

is i n /~0 j+0  k + 2 0 p + O q j  (3.36) 

where the sites j ,  k, p, and q are again the corners of an elementary square. 
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This term leaves the weights W 1 through W 4 unchanged, and modifies W~ 
and W6 b by an equal, imaginary amount and Wg and W5 b by the same 
amount in the opposite direction. The terms (3.32) and (3.36) are quite 
similar. Both represent the presence of a complex of charged particles of 
total electric charge 2 or -2 .  However, (3.36) introduces a difference 
between X(2) and X ( -  2) whereas (3.32) only contributes to their sum. This 
implies that in the equivalent CG the fugacities df the positive and negative 
charges are unequal. The consequences of such asymmetry are discussed at 
the end of Section 2.3, and can be readily applied here. Since at the critical 
point of the Potts model, that is at the F model, both X(2) and X ( - 2 )  
vanish, the candidates for the thermal exponent of the Potts model are, 
from Eqs. (2.24) and (2.25), 3 - 6 / g  R and 2 - 2 / g  R. There is to my 
knowledge no a p r i o r i  way to tell which of these two is correct, since there 
seems to be no simple way of deciding whether the renormalized value of 
X ( - 2 )  is zero. At q = 0 (resistor network (32)) and q = 2 (Ising model), 
however, the Potts exponent is known exactly and at q = 3 by universality 
(hard hexagon model(33)). These values agree with a thermal Potts exponent 
of the kind (2.24) 

YP,z = 3 - 6 / g  R 

with 

q = 2 + 2 c o s  ~-gk and 2 <  gR~<4 (3.37) 

This is the value that corresponds to the case described by Eq. (2.24), and 
implies that the renormalized value of X ( - 2 )  is zero even away from the 
critical point of the Potts model. Numerical estimates of this exponent (34) 
clearly support this value also at intermediate values of q. However, based 
on the leading exponent alone, one cannot exclude the possibility that, 
while X(2) is linear in w - 1, X ( - 2 )  varies as (w - 1) 3 [by dual symmetry 
( w -  1) 2 is forbidden]. The subspace of BCSOS parameters, which is 
equivalent to the Potts model, is of a special symmetry, invariance under 
permutation of the q states. The universality hypothesis implies that sub- 
spaces of higher symmetry are preserved under renormalization. In the 
phase diagram Fig. 1 the only RG flow line that meets the origin tangential 
with the X(2) axis is the X(2) axis itself. Therefore unless universality is 
violated in this case, I conclude that the renormalized value of X ( - 2 )  
vanishes in the Potts model at all temperatures. The curious significance of 
this statement is that the Potts subspace is a critical manifold in the space 
of more general BCSOS models, even where the Potts model itself is not 
critical. The long-range correlations associated with the singularity of the 
Potts subspace must be impossible to express in Potts variables. In retro- 
spect this is not that surprising, since the operators that have critical 
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fluctuations are those associated with breaking the special symmetry. These 
operators naturally cannot be expressed in Potts variables, in which the 
symmetry is inherent. 

A suitably generalized Potts model (12'34) exhibits besides critical also 
tricritical behavior. Analyzed by means of the same CG equivalence (12) this 
tricritical behavior is due to an asymmetry between the e = + 4 and - 4  
charges. At the tricritical point the +4  charges are completely expelled 
from the renormalized CG, while the - 4  charges still remain. The leading 
tricritical exponent is given by the same equation (3.37) as the critical 
exponent, now on the branch with 4 < gR ~< 6. The second tricritical 
exponent governing the crossover singularities is, analogous to Eq. (2.26) 

YP,t2 ~- 4 - 16/g  R (3.38) 

Den Nijs (13) recently showed that the spin-spin correlation function of the 
q-state Potts model translates into a charge correlation function between 
fractional charges. Curiously the value of these charges is a continuous 
function of gR and therefore of q. The magnetic eigenvalue follows from the 
exponent of these correlation functions, and is 

3 gR (3.39) Y*',m= l +-~gR + - g -  

The values of the critical and tricritical exponents for integer q are listed in 
Table I. This table is a clear illustration of the predictive power of this 
theory, since more than half of the numbers in the table were not previ- 
ously known from other sources. Most of these exponents apply at least in 

Table I. Critical and Tricritical Exponents of the 
q-State Potts Model a 

0 1 2 3 4 

3 6 3 
YP,t 0 -- 1 

Ye,m 2 91  15 28 15 
48 8 15 8 
15 9 12 3 

Yp,tl 2 ~ -  ~ - f  

4 4 4 yp,a ~ 1 ~ y o 

Ye,m 2 18 7 77 40 15 
96 40 21 8 

aFor the critical point the leading thermal, Yea = l / v ,  and mag- 
netic, YP,m = 2 -  ~ /2 ,  eigenvalues are shown. For the tricritical 
transition the leading thermal, Yp,tJ = l / v ,  the next-to-leading 
thermal, YP, t2 = ~b/.v, and the leading magnetic YP.m = 2 -  ~1/2 
eigenvalues are listed. 
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principle to actual phase transitions in adsorbed monolayers. (35) The values 
at q = 1 describe two-dimensional percolation processes. (32) 

3.6. The O(n) Model 

Another two-dimensional spin model of interest is the isotropic n- 
vector model or O(n) model. (~4) This class of models has n-component 
spins for variables, interacting via a ferromagnetic Hamiltonian invariant 
under simultaneous rotation of the spins. In many representations the 
partition is expressed in a form in which n is simply a parameter and may 
then be given non-natural values. In the limit n = 0 this partition sum then 
describes the scaling behavior of a long polymer in solution. (36~ The 
sequence of transformations from O(n) models to the CG has been per- 
formed only for a limited class of models, of which the Hamiltonian is 
peculiarly designed so as to make the mapping possible. (JS~ The partition 
integral for an O(n) model on the honeycomb lattice is defined by 

Zo(n) = (  H Q(si) dnsi ~ (I + Ksj" sk) (3.40) 
"J i <j,k ) 

The first product is over the sites and the second over nearest-neighbor 
pairs of sites of the honeycomb lattice. This model is an O(n) model if the 
weight function Q(s) is isotropic. However, for the derivation that follows it 
is sufficient if Q(s)  is invariant under cubic transformations, i.e., permuta- 
tion or inversion of the spin components. The weight function and the 
length of the n-component spins s are normalized so that fQ(s)dns = 1 and 
fs2Q(s)d~s = n. The partition sum (3.40) can be expanded in a sum over 
all diagrams consisting of closed rings on the honeycomb lattice(35): 

Zo(n) = ~, Ken c (3.41) 
G 

where c is the number of rings in the diagram G and L their total length. 
In order to make the connection with the CG I will show that the O(n) 

model (3.41) is equivalent to a suitably defined SOS model. The necessary 
sequence of transformations is given starting from a 6V model on the 
Kagom6 lattice, shown in Fig. 4. This lattice has three types of vertices, 
labeled A, B, and C. The arrow configurations as numbered in Fig. 2a, at a 
vertex of type A have weights 

WI, W 2 , . . .  , W 6 ~- 1, 1,b,b, exp(2iu),exp(-2iu) (3.42) 

On the vertices of type B and C the weights (3.42) are assigned to the 
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,-7' \',,-J \': 
h 

..7 X-. .-r \-.-'I \'- 

Fig. 4. The Kagom~ lattice shown by solid lines. Vertices of types A, 13, and C differ by 
rotation over _+ 2~r/3. The dashed lines indicate the honeycomb lattice. The symbols t and h 
mark the positions of the variables 01 and O h of the KSOS model. 

configurations of Fig. 2a rotated over _+ 2~r/3. The same process by which 
the square 6V model is transformed to the BCSOS model (see Fig. 2b), 
maps the 6V model defined here onto an SOS model (the KSOS model for 
quick reference), of which the variables reside on the faces of the Kagom6 
lattice. The variables on the hexagons O h and on the triangles 0 t assume 
even and odd multiples of Tr/2, respectively, such that two adjacent 0 '  and 
O h always differs by precisely one such unit. The weights (3.42) of the 
KSOS model correspond to an interaction defined by the following rule: A 
weight b is assigned to each nearest-neighbor pair of O h with unequal 
members, and a weight exp(iu) or e x p ( -  iu) to each pair of adjacent 0 t and 
O h if 0 t > O h or 0 '  < O h, respectively. Since these rules do not include an 
interaction of the 0 '  among themselves, these variables can be traced out. 
This process leaves an effective interaction among three adjacent O h . Such 
triplet can be in one of three energetically different configurations: (i) They 
are equal. In this case the 0 t in the center can be in two states, and the 
effective weight is 2cos(3u). (ii) One of the O h is larger than the other two. 
The center 0 t must now assume the intermediate value, and the weight is 
b exp(iu). (iii) One O h is smaller than the other two, with weight b e x p ( -  iu). 
The result is an SOS model on a triangular lattice (the TSOS model), in 
which adjacent variables may be equal or different by ~r. 

The partition sum of this model can be expressed as a low-temperature 
expansion, in powers of b. The ground state, with all O h equal, has a weight 
2 cos(3u) per triplet, which it is convenient to divide out. The expansion 
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parameter is then 

K -  b 
2cos(3u) (3.43) 

A natural diagram representation of the states of this model is given by the 
domain walls between regions of different O h . These walls form closed rings 
on the honeycomb lattice (see Fig. 4). To calculate the weight of a given 
ring, follow it all the way round, keeping the higher value of O h on the 
left-hand side. At the vertices of the honeycomb lattice, the domain wall 
turns either to the right or to the left. At a vertex where the wall turns left, it 
has a weight K e x p ( i u ) ,  and where it turns right the weight is K e x p ( - i u ) .  
Since each domain wall is closed and does not intersect itself, the number 
of right turns N r and the number of left turns N l satisfy INt - Nr[ = 6. The 
domain walls can thus be of two types with N r - N r = 6, or with N I - N r 

= - 6 .  Therefore the partition sum is performed in two steps, first a sum 
over all possible configurations of closed domain walls on the lattice, and 
then for a given such configuration a sum over their type. Since the type of 
each wall can be decided independently of the other walls, the second sum 
is trivial and leaves the partition sum 

ZTSOS = (2 COS 3 u) 2N E KL (2 cos 6 u) c (3.44) 
G 

N is the total number of variables, and, for each wall configuration c is the 
number of rings and L their combined length. Obviously the partition sums 
Zo(n )  and ZTSOS are equivalent if 

n = 2 cos(6u) (3.45) 

This completes the transformation of the KSOS model (3.42) into the O ( n )  

model (3.40), and suggests a connection with the CG. 
The weights (3.42) are similar to the weights (3.35), corresponding to 

the Potts model. The same arguments as in Section 3.5 show that in the CG 
model equivalent with this KSOS model, the fugacities X(2) and X( - 2) are 
generally unequal and nonzero. A distinct difference between the KSOS 
model and the BCSOS model, is the absence of symmetry between the 0 t 
and the 0 h variables. The weights W~ and W 2 thus are not equivalent with 
W 3 and W 4. Therefore it is not evident from symmetry at what value of b 
the fugacities X(2) and X ( - 2 )  vanish, unlike the case of the analogous 
BCSOS model. In order to determine the locus of the O ( n )  model in the 
parameter space of the CG, I now generalize some of the results derived in 
Sections 3.3 and 3.5. 

The Potts model [Eq. (3.34)] on the triangular lattice is equivalent (31~ 
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with a KSOS model, with weights 

W1, W 2 . . . .  , W 6 = 1, 1, b, b, exp(2iv) + b e x p ( - i v ) , e x p ( - 2 i v )  + b exp( iv) 

(3.46) 

on the A vertices, and for the rotated configurations on the B and C 
vertices. The parameters b and v are related to the Potts parameters by 

cos(3v) 
exp(J )  = 1 + ~ (3.47) 

and 

q = 2 + 2 cos(6v) 

At its critical point, b = 2cos(3v) the Potts model reduces to the F model 
on the Kagom6 lattice, of which Baxter has demonstrated (23'38) that it can 
be transformed into the square F model. Hence also for  the triangular Potts 
model the fugacities X(2) and X ( -  2) both vanish at the critical point. Thus 
of the analysis of Section 3.5 all conditions that could be lattice dependent 
are nonetheless satisfied for the triangular Potts model. Therefore, in 
keeping with the analysis at the end of Section 2.3, the 6V model (3.46) 
forms a critical manifold in a larger parameter space. The O(n) model is 
therefore critical at its intersection with the Potts model, and its transition is 
computed readily from the coincidence of (3.46) and (3.42), 

b --- - 2 c o s ( 3 v )  (3.48) 

and 

u = ~r/2 - 2v 

which expressed in n and K [Eq. (3.43) and (3.45)] is 

K c = [ 2  + ( 2 -  n)1/2] -1/2 (3.49) 

The renormalized coupling constant gR at the F model follows as in Section 
3.3 from the 8V exponent, which is given for the Kagom6 F model and the 
CG, respectively, by 

Ygv - 6v _ 2 gR (3.50) 
~r 2 

Since the number of states q of the Potts model is a label of symmetry and 
universality Classes, RG flow lines in the Potts model are lines of constant 
q. Consequently, the relation (3.37) between q and gR holds in the entire 
Potts model (3.46) and not only in the F model. 
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The thermal O(n) exponent is then that of X ( - 2 )  at finite values of 
X(2) [Eq. (2.24)1 

Yo(n),, = 4 - 4 / g  R (3.51) 

gR follows from Eqs. (3.45), (3.48) and (3.50) 

n = - cos(vrg R) (3.52) 

with 1 < gR < 2. Note that the product X(2)2X(-4) ,  which is finite at the 
transition, is irrelevant for these values of gR" 

The magnetic exponent of the O(n) model follows from the spin-spin 
correlation function (Sy. sk). It is readily verified that the diagrams of this 
quantity are walks on the honeycomb lattice from site j to k, possibly 
combined with rings. An example of such diagram is shown in Fig. 5. In 
the SOS language these diagrams correspond with the vortex-antivortex 
correlation function, of magnetic charge 1/2, as the walk represents a 
domain wall of step ~r. However, the peculiar weights of the TSOS model 
associate energy with the curvature of the walk, with the result that the 
diagrams Figs. 5a and 5b have different weight. This problem can be 
repaired by adding the spin-wave operator 

exp( -6iu____OO)vr (3.53) 

to both vortex operators. For each full turn of the walk about one of its 
ends, this point is raised or lowered by vr, as shown in Fig. 5. The spin-wave 
(3.53) then gets multiplied by a factor e x p ( - 6 i u )  or exp(6iu), precisely 
opposite to the factor from the additional turns. Some diagrams contribut- 
ing to the spin-spin correlations function contain rings surrounding both 
end points. When such ring contributes the factor exp(6iu), its interior is 

Ct. b. 
Fig. 5. Two diagrams (a and b) that contribute to (sj. Sx) with equal weight. A path (dashed 
curve) connects site k to the boundary of the lattice. Since the path in diagram b crosses one 
domain wall, the height of site k differs from that in diagram a by one step of 7r. This 
difference does not depend on the particular dashed path chosen, provided the same path is 
taken in diagram a and b. 
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raised by ~, and the two spin-wave operators both contribute an extra 
exp(-6iu) ,  so that the total becomes exp(-6iu) .  Thus the spin waves 
replace the factor exp(6iu) by exp(-6 iu)  and vice versa, so that the total 
weight of the surrounding ring, being the sum of the two is conveniently left 
invariant. 

The magnetic exponent is therefore that of a combination of a vortex 
and a spin wave, the latter of which has a charge continuously dependent 
on n. The resulting magnetic exponent is 

3gR ~ (3.54) Yo(n),m = 1 + - - ~  + 2g R 

The exponents (3.53) and (3.56) reproduce the well-known results for the 
Ising (n = 1) and X Y  (n = 2) models, and for the polymer limit they give 
the numbers u = 3 /4  and ~, = 43/32. The exponent u is the same as that 
calculated by Flory, (39) but his mean-field method has the character of an 
approximation. The agreement is probably a coincidence. 

Since at the O(n) transition X ( - 2 )  changes sign at a finite value of 
X(2), in the low-temperature phase these two fugacities have unequal sign. 
Recall that Fig. 1, where the O(n) model is indicated by a dashed line, 
shows that the region with X ( 2 ) X ( - 2 ) <  0 is critical and renormalizes 
ultimately to the vacuum, with a gR < 1. In the O(n) model this value of 
the renormalized coupling constant is simply another branch of Eq. (3.52), 
and thus known as a function of n. The magnetic exponent (3.56), with this 
value o f  gR substituted, describes the power law decay of the correlation 
function and the singularity of the free energy as function of the magnetic 
field, in the low-temperature phase. For 1 < n < 2 the exponentyo(n),m < 2, 
which means that the model is not genuinely ordered, but has a second- 
order transition in the field. This is similar to the low-temperature phase of 
the X Y  model, but the magnetic exponent is universal and does not depend 
on temperature. For n = 1 the low-temperature exponent is 2, in agreement 
with the finite value of the spontaneous magnetization. For n < 1 Yo(,),m 
> 2, SO that the spin-spin correlation function grows instead of decays with 
distance, and the magnetization is infinite at zero field. This nonphysical 
situation is likely the result of the nonphysical values of n, and of no 
consequence. However, the physics of a two-dimensional polymer solution 
in the semidilute regime, (4~ which is described by the low-temperature 
phase of the O(n = 0) model, probably reflects this unusual behavior. 

4. CONCLUSIONS 

A connection between the CG and a number of spin models in two 
dimensions has been established and utilized for the calculation of critical 
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behavior. The CG model is like a language in which many of the standard 
problems in two-dimensional statistical mechanics may be phrased. Similar 
uses have been made of SOS models and the one-dimensional electron 
gas.O 1) 

The CG as a computational tool has by no means been exhausted by 
the calculations sampled in this reivew. For the models discussed here 
many more critical indices can be calculated of a variety of symmetry 
breaking fields and the like, in addition to the asymptotic behavior of 
multiple correlation functions. (42) Many models are not discussed here. 

The question which models that as yet have not had the pleasure of an 
intimate connection with the CG can be treated with these techniques is not 
easy to answer. It  is a basic weakness of the theory that the transformations 
used to make the connection between the spin model and the C G  are rarely 
found on purpose. It  is far from clear what can and cannot be done by 
these mappings, The mechanism of the phase transition in the CG models 
equivalent with the Zp, Ashkin-Teller,  Potts, or O ( n )  models, are driven by 
strikingly dissimilar mechanisms. Nevertheless the Ising model is a special 
case of all four of these classes. This suggests that an insight in the physical 
nature of the phase transition of a model is a poor guide to find, whether, 
and where in the parameter  space, the model can be mapped  onto a CG. 

An obvious disadvantage of the method is its utter dependence on R G  
and universality assumptions. On the other hand some of the results 
reviewed in this paper  are an independent confirmation of universality. For 
instance the three-state Potts critical exponents coincide with those of the 
hard hexagon problem, O3) and the Ising tricritical indices agree with those 
of the hard square model. O3) If the outcome of a calculation like those in 
Section 3 of this paper  strongly disagree with approximates or estimates, a 
suspicion of the underlying assumptions is justified. If, however, the results 
are known to be approximately correct, this can be taken as evidence that 
the assumptions are valid and the results in fact exact. Calculations of this 
kind cannot give approximate answers except by mere coincidence. 
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